Mouvements d'un proton dans un champ magnétique et/ou électrique

Dans une enceinte sous vide, on injecte des protons (masse m et charge q) avec une vitesse initiale V_0 . On applique un champ magnétique uniforme B selon la direction Oz et un champ électrique uniforme E dans la direction Oy. L'influence de la pesanteur est négligeable devant les autres forces.

L'équation générale du mouvement est donc : $m.\vec{a}=q.\vec{E}+q.(\vec{V}\wedge\vec{B})$ (k)

Cas B = 0.

Par projection de (k) sur les axes, on tire :

$$m.\frac{dV_x}{dt} = 0$$
 $m.\frac{dV_y}{dt} = q.E$ $m.\frac{dV_y}{dt} = 0$

Par intégration comme x(0) = 0, y(0) = 0 et z(0) = 0, on tire :

$$x = V_{x0}.t$$
 $y = \frac{q.E}{2.m}t^2 + V_{y0}.t$ $z = V_{z0}.t$

Cas $B \neq 0$.

Par projection de (k) sur les axes, on tire :

$$m\frac{dV_x}{dt} = q.B.V_y \quad (1)$$

$$m\frac{dV_y}{dt} = -q.B.V_x + q.E \quad (2)$$

$$m\frac{dV_z}{dt} = 0 \quad (3)$$

L'intégration de (3) est immédiate est donne $z = V_{z0}$.

Pour l'intégration de (1) et (2) on pose $\omega = \frac{q.B}{m}$ et V = Vx + i.Vy. ($i^2 = -1$) $\frac{dV}{dt} = \frac{d}{dt} \left(Vx + iVy \right) = \frac{q.B}{m} \left(Vy - iVx \right) + i\frac{q.E}{m}$ $\frac{dV}{dt} + i.\omega.V = i\frac{q.E}{m}$

La solution est la somme d'une solution particulière de l'équation avec second membre et de la solution générale de l'équation sans second membre : $V = V_0.e^{-i\omega t} + \frac{E}{R}$

Les conditions initiales sont : x(0) = 0, y(0) = 0 et z(0) = 0; $Vx(0) = V_{x0}$ et $Vy(0) = V_{y0}$.

$$\begin{split} V = & \left(V_{x0} - \frac{E}{B} + iV_{y0} \right) \left(\cos(\omega t) - i.\sin(\omega t) \right) + \frac{E}{B} \\ Vx = & \left(V_{x0} - \frac{E}{B} \right) \cos(\omega t) + V_{y0}.\sin(\omega t) + \frac{E}{B} \\ Vy = & V_{y0}.\cos(\omega t) - \left(V_{x0} - \frac{E}{B} \right).\sin(\omega t) \end{split}$$

Une dernière intégration donne :

$$x = \frac{E}{B}.t + \frac{1}{\omega} \left(V_{x0} - \frac{E}{B} \right) \sin(\omega t) + \frac{1}{\omega} V_{y0}. \left(1 - \cos(\omega t) \right)$$
$$y = \frac{1}{\omega} \left(V_{x0} - \frac{E}{B} \right). \left(\cos(\omega t) - 1 \right) + \frac{1}{\omega} V_{y0}. \sin(\omega t)$$