Courbe du chien

Un homme se déplace le long de Oy avec la vitesse constante vh. Pour le rattraper, son chien



placé initialement en C_0 sur Ox (H_0C_0 = a) court vers lui avec la vitesse constante v_c . Le vecteur vitesse est dirigé en permanence vers le maître du chien.

Mise en équation

Soient x et y les coordonnées de C.

$$HI = v_h t - y = -IC.tg \alpha$$
.

Par hypothèse la vitesse est tangente à la trajectoire : tg $\alpha = y'$

Soit :
$$v_h t - y = -xy'$$
 (1)

Dans le triangle ABC $\cos \alpha = BC/AC = dx/ds$

$$\frac{1}{\cos\alpha} = \frac{ds^2}{dx^2} = 1 + tg^2\alpha$$

$$ds^2 = (1 + y'^2)dx^2$$
; mais $ds/dt = v_c = Cte$
 $v_c^2dt^2 = (1 + y'^2)dx^2$; comme dx est négatif, on tire :

$$(1+y'^2)^{1/2} = -v_c dt/dx$$
 (2)

Résolution

On pose $K = v_c/v_h$. On élimine t entre (1) et (2)

$$v_h t = y - xy$$
' en dérivant, on a : $v_h \frac{dt}{dx} = y' - xy'' - y' = -xy''$

$$(1+y'^2)^{1/2} = -v_c \frac{dt}{dx} = v_c \frac{xy''}{v_h} = Kxy''$$

Pour résoudre cette équation, on pose y' = -sh(w)

$$y'' = \frac{dy'}{dx} = \frac{dy'}{dw} \frac{dw}{dx} = -ch(w) \frac{dw}{dx} \quad \text{mais} : 1 + y'^2 = ch^2(w) \Rightarrow ch(w) = -Kch(w)x \frac{dw}{dx}$$
$$\frac{dx}{x} = -Kdw \quad \Rightarrow \quad x = Ce^{-Kw}$$

Si
$$t = 0$$
, $x = a$, $y' = 0$, $w = 0$; donc $C = a$ et
$$dy = y'dx = -sh(w)dx. \qquad dx = -aKe^{-Kw} dw$$
$$dy = aKe^{-Kw} sh(w)dw$$
$$dy = \frac{aK}{2} \left[e^{(1-K)w} - e^{-(K+1)w} \right] dw$$

Après intégration, on tire : $y = \frac{aK}{2} \left[\frac{e^{-(1+K)w}}{K+1} - \frac{e^{-(K-1)w}}{K-1} \right] + y_0$

Si
$$t = 0$$
, $w = 0$ et $y = 0 \Rightarrow y_0 = aK/(K^2 - 1)$.

Pour déterminer t, on remplace x et y par leurs valeurs dans l'équation (1).

$$t = \frac{a}{2v_h} \left[\frac{1 - e^{-(K+1)w}}{K+1} + \frac{1 - e^{-(K-1)w}}{K-1} \right]$$

Pour obtenir la courbe, on fait varier w entre 0 et l'infini.